Related Rates

Tamara Kucherenko

Related Rates

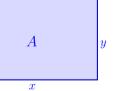
In related rates problems we compute the rate of change of one quantity in terms of the rate of change of the other.

Rate of change = derivative

Strategy:

- Draw a diagram and introduce the notation
- Write an equation relating the quantities of the problem
- Take derivative with respect to time (Use the Chain Rule!)
- Substitute the given information and solve for the unknown.

The length of a rectangle is increasing at a rate of 8 cm/s and its width is increasing at a rate of 3 cm/s. When the length is 20 cm and the width is 10 cm, how fast is the area of the rectangle increasing?



Notation: t-time, x-length, y-width, A-area

Given:
$$\frac{dx}{dt} = 8$$
, $\frac{dy}{dt} = 3$

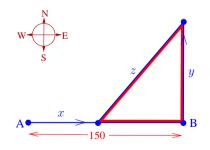
Find:
$$\frac{dA}{dt}$$
 when $x = 20$ and $y = 10$.

Area of the rectangle: $A = x \cdot y$

Differentiate with respect to
$$t$$
: $\frac{dA}{dt} = \frac{dx}{dt}y + x\frac{dy}{dt}$

Substitute the given information:
$$\frac{dA}{dt} = 8 \cdot 10 + 20 \cdot 3 = \boxed{120 \frac{\text{cm}^2}{\text{s}}}$$

At noon, ship A is 150 km west of ship B. Ship A is sailing east at 35 km/h and ship B is sailing north at 25 km/h. How fast is the distance between the ships changing at 4:00 PM?



Example 1

Notation: t - time elapsed since noon.

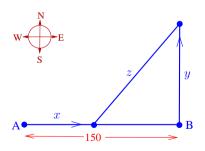
x - distance travelled by A since noon,

y - distance travelled by B since noon,

z - distance between A and B

Given: $\frac{dx}{dt} = 35$, $\frac{dy}{dt} = 25$. Find: $\frac{dz}{dt}$ when t = 4. The Pythagorean theorem: $z^2 = (150 - x)^2 + y^2$

At noon, ship A is 150 km west of ship B. Ship A is sailing east at 35 km/h and ship B is sailing north at 25 km/h. How fast is the distance between the ships changing at 4:00 PM?



Example 1

Given:
$$\frac{dx}{dt} = 35$$
, $\frac{dy}{dt} = 25$. Find: $\frac{dz}{dt}$ when $t = 4$.

The Pythagorean theorem: $z^2 = (150 - x)^2 + y^2$ Differentiate: $2z\frac{dz}{dt} = 2(150 - x)\left(-\frac{dx}{dt}\right) + 2y\frac{dy}{dt}$

At time
$$t=4$$
: $x=35\cdot 4=140$ $y=25\cdot 4=100$ $z^2=(150-140)^2+100^2=10100$, so $z=10\sqrt{101}$.

Plug in:
$$2 \cdot 10\sqrt{101} \frac{dz}{dt} = 2(150 - 140)(-35) + 2 \cdot 100 \cdot 25$$

Solve for $\frac{dz}{dt}$: $\frac{dz}{dt}(4) = \boxed{\frac{430}{\sqrt{101}}} \text{km/h}$

A kite 100 ft above the ground moves horizontally at a speed of 8 ft/s. At what rate is the angle between the string and the horizontal decreasing when 200 ft of string has been let out?

Notation: t - time elapsed,

x - distance travelled by the kite.

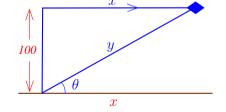
y - length of the string.

 θ - angle between the string and the horizontal

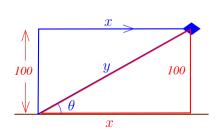
Given: $\frac{dx}{dt} = 8$. Find: $\frac{d\theta}{dt}$ when y = 200.

$$\tan \theta = \frac{100}{x}$$

 $\tan \theta = \frac{100}{x}$ Differentiate: $\sec^2 \theta \cdot \frac{d\theta}{dt} = -\frac{100}{x^2} \cdot \frac{dx}{dt}$



A kite 100 ft above the ground moves horizontally at a speed of 8 ft/s. At what rate is the angle between the string and the horizontal decreasing when 200 ft of string has been let out?



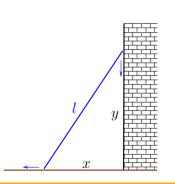
Given:
$$\frac{dx}{dt} = 8$$
, Find: $\frac{d\theta}{dt}$ when $y = 200$.

$$\tan \theta = \frac{100}{x}$$
 Differentiate: $\sec^2 \theta \cdot \frac{d\theta}{dt} = -\frac{100}{x^2} \cdot \frac{dx}{dt}$

When
$$y=200$$
: $x^2=200^2-100^2=30000$ $\sec\theta=\frac{y}{x}\Longrightarrow\sec^2\theta=\frac{y^2}{x^2}=\frac{40000}{30000}=\frac{4}{3}$

Plug in:
$$\frac{4}{3} \cdot \frac{d\theta}{dt} = -\frac{100}{30000} \cdot 8 \implies \frac{d\theta}{dt} = \boxed{-0.02 \, \text{rad/s}}$$

The top of a ladder slides down a vertical wall at a rate of 0.15~m/s. At the moment when the bottom of the ladder is 3 m from the wall, it slides away from the wall at a rate of 0.2~m/s. How long is the ladder?



Notation: t - time elapsed,

 \boldsymbol{x} - distance of the bottom to the wall,

 \boldsymbol{y} - distance of the top to the ground,

 \emph{l} - length of the ladder

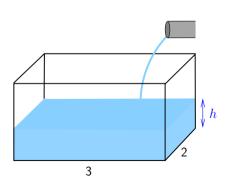
Given: $\frac{dy}{dt} = -0.15$ and $\frac{dx}{dt} = 0.2$ when x = 3. Find: l.

$$l^2 = x^2 + y^2$$
 Differentiate: $0 = 2x \frac{dx}{dt} + 2y \frac{dy}{dt}$

Plug in:
$$0 = 2 \cdot 3 \cdot 0.2 + 2y(-0.15) \implies y = 4$$

$$l^2=3^2+4^2=25 \implies l=\boxed{5\,\mathrm{m}}$$

Water pours into a fish tank at a rate of 3 ft³/min. How fast is the water level rising if the base of the tank is a rectangle of dimensions 2×3 ft?



Notation: t - time elapsed,

h - hight of the water,

V - volume of the water

<u>Given</u>: $\frac{dV}{dt} = 3$. <u>Find</u>: $\frac{dh}{dt}$.

 $V=3\cdot 2\cdot h=6h$ Differentiate: $\dfrac{dV}{dt}=6\,\dfrac{dh}{dt}$

Plug in: $3 = 6 \cdot \frac{dh}{dt} \implies \frac{dh}{dt} = \boxed{0.5\,\text{ft/min}}$

THE END